APPENDIX B
DEBRIS MANAGEMENT PLAN OUTLINE EXAMPLE

The following outline can be used to develop a Debris Management Plan.

DEBRIS MANAGEMENT PLAN

PURPOSE

- To provide policies and guidance to _______________ for the removal and disposition of debris caused by a major disaster.
- To facilitate and coordinate the management of debris following a disaster in order to mitigate against any potential threat to the lives, health, safety, and welfare of the impacted citizens, expedite recovery efforts in the impacted area, and address any threat of significant damage to improved public or private property.

SITUATION AND ASSUMPTIONS

SITUATION

- Natural and manmade disasters precipitate a variety of debris that include, but are not limited to, such things as trees, sand, gravel, building construction material, vehicles, personal property, and hazardous materials.
- The quantity and type of debris generated from any particular disaster will be a function of the location and kind of event experienced, as well as its magnitude, duration, and intensity.
- The quantity and type of debris generated, its location, and the size of the area over which it is dispersed will have a direct impact on the type of collection and disposal methods utilized to address the debris problem, associated costs incurred, and how quickly the problem can be addressed.
- In a major or catastrophic disaster, many state agencies and local governments will have difficulty in locating staff, equipment, and funds to devote to debris removal, in the short-term as well as long-term.

ASSUMPTIONS

- A natural disaster that requires the removal of debris from public or private lands and waters could occur at any time.
- The amount of debris resulting from an event or disaster could exceed the local government’s ability to dispose of it.
- If the natural disaster requires, the Governor would declare a state of emergency that authorizes the use of State resources to assist in the removal and disposal of debris. In the event Federal resources are required, the Governor would request through FEMA a Presidential Disaster Declaration.
- Private contractors will play a significant role in the debris removal, collection, reduction and disposal process.
- The debris management program implemented by the local government will be based on the waste management approach of reduction, reuse, reclamation, resource recovery, incineration and landfiling.
CONCEPT OF OPERATIONS

Emergency Operations Center Activation

- Define how the County Emergency Management Agency will activate the Emergency Operations Center (EOC).
- Define who will make up the Debris Management Task Force (DMTF) and their specific duties and responsibilities.
- The EOC Director or his designated representative in conjunction with the DMTF will determine the extent of damage and resulting debris and issue appropriate directives to implement this annex.
- Create an appendix that contains a listing of key points of contact.

Estimating the Type and Amount of Debris

- Designate public works department personnel to determine the estimated amount of debris generated as soon as possible.
- Define the estimating methods to be used. One method to estimate debris is to conduct a drive-through “windshield” damage assessment and estimate the amount of debris visually. Another method is an aerial assessment by flying over the area using State Police and/or National Guard helicopters and Civil Air Patrol reconnaissance flights. The damaged area can be assessed either visually or using aerial photography. Once the area has been assessed actions can be taken to implement Phase I debris clearing procedures and institute requests for additional State or Federal assistance.

Site Selection Priorities

- Determine the number of Temporary Debris Storage and Reduction (TDSR) sites and location of these sites for the collection and processing of debris.
- Prioritize which sites will be opened based on the amount of debris estimated.

 First Priority: Pre-determined TDSR sites
 Second Priority: Public property within the damaged area
 Last Priority: Private property
Pre-Designated TDSR sites

- Pre-identified TDSR sites should be identified on county maps.
- Either Solid Waste Authority or Public Works should maintain detailed information pertaining to each of these sites. Designate which agency has responsibility.
- Detailed information should include exact location, size, available ingress and egress routes and results of an environmental assessment and initial data samples.
- Baseline data should include videotapes, photographs, documentation of physical and biological features, and soil and water samplings.
- The list of TDSR sites should be reviewed annually and updated as necessary as part of the normal maintenance plan.

TDSR Site Preparation.

- Identify the preparatory actions that need to be accomplished after a pre-designated TDSR site has been selected.
- Develop a Memorandum of Understanding or a Memorandum of Agreement if required.
- Identify who would be responsible for updating the initial baseline data and develop an operation layout to include ingress and egress routes.

Existing Landfills.

- Identify location of county and private landfills.
- Identify any restrictions, limitations or tipping fees.

DEBRIS REMOVAL

General

- Hurricanes and other natural disasters can generate unprecedented amounts of debris in a few hours or a few minutes. The debris may be equally heavy in both urban and rural areas depending on the magnitude of the tree blow-down and associated structural damage such as homes, businesses, utilities and signs. This section provides guidelines on debris removal issues, including emergency roadway clearance, public rights-of-way removal, mobile home park removal, private property removal, navigation hazard removal, and Household Hazardous Waste (HHW) removal.
- Debris removal, regardless of source, becomes a high priority following a disaster. Debris management strategy for a large-scale debris removal operation divides the operation into two phases.
- Phase I consists of the clearance of the debris that hinders immediate life saving actions being taken within the disaster area and the clearance of that debris which poses an immediate threat to public health and safety.
- Phase II operations consist of the removal and disposal of that debris which is determined necessary to ensure the orderly recovery of the community and to eliminate less immediate threats to public health and safety.
Emergency Roadway Debris Removal (Phase I)

- Identify critical routes that are essential to emergency operations.
- Define how efforts will be prioritized between local agencies.
- Identifying areas that State and Federal assistance can target.
- Define what actions take place during Phase I.
- Example: Roadway debris removal involves the opening of arterial roads and collector streets by moving debris to the shoulders of the road. There is no attempt to physically remove or dispose of the debris, only to clear key access routes to expedite the:
 - Movement of emergency vehicles,
 - Law enforcement,
 - Resumption of critical services and,
 - Assessment of damage to key public facilities and utilities such as schools, hospitals, government buildings, and municipal owned utilities.
- Define the type of debris that may be encountered such as tree blow-down and broken limbs; yard trash such as outdoor furniture, trash cans, utility poles, power, telephone and cable TV lines, transformers and other electrical devices; building debris such as roofs, sheds and signs; and personal property such as clothing, appliances, boats, cars, trucks and trailers.
- Define the priority to open access to other critical community facilities, such as municipal buildings, water treatment plants, wastewater treatment plants, power generation units, and airports.
- The requirement for government services will be increased drastically following a major natural disaster. Develop procedures to determine the damage done to utility systems. Activities involving these facilities should be closely coordinated with their owners and/or operators.

Local, Tribal, State and Federal Assistance

- Identify local, tribal, State and Federal government assets that may be available such as:
 - Municipal workers and equipment
 - Local and State Department of Transportation (DOT) workers and equipment
 - National Guard
 - Local contractors
 - U.S. Department of Agriculture (USDA) Forest Service chain saw crews
 - Local U.S. Army Corps of Engineers (USACE) workers and equipment

Supervision and Special Considerations

- Immediate debris clearing (Phase I) actions should be supervised by local public works or DOT personnel using all available resources. Requests for additional assistance and resources should be made to the State Emergency Operations Center (EOC). Requests for Federal assistance will be requested through the State Coordinating Officer (SCO) to the FEMA Federal Coordinating Officer (FCO).
- Special crews equipped with chain saws may be required to cut up downed trees. This activity is hazardous, and common sense safety considerations are necessary to reduce the chance of injury and possible loss of life. When live electric lines are involved, work crews should coordinate with local utility companies to have power lines deenergized for safety reasons.
ADDENDUM B
DEBRIS MANAGEMENT PLAN OUTLINE EXAMPLE

• Front-end loaders and dozers should be equipped with protective cabs. Driveway cutouts, fire hydrants, valves, and stormwater inlets should be left unobstructed. All personnel should wear protective gear, such as hard hats, gloves, goggles, and safety shoes.

• The USDA Forest Service and other State and Federal land management agencies are equipped for fast responses to tornadoes, and hurricanes. Assistance would be requested through the State SCO to the FCO according to standard procedures.

Public Rights-of-Way Debris Removal and Disposal (Phase II)

• Debris is simply pushed to the shoulders of the roadway during the emergency opening (Phase I) of key routes. There is little time or concern for sorting debris at that time. The objective is to provide for the safe movement of emergency and support vehicles into and out of the disaster area. As removal operations progress, the initial roadside piles of debris become the dumping location for additional yard waste and other storm-generated debris, such as construction material, personal property, trash, white metals such as refrigerators, washers, dryers and hot water heaters, roofing and even household, commercial, and agricultural chemicals.

• Define how the DMTF will coordinate debris removal operations.
• Define how local and State government force account employees will transition from Phase I to Phase II operations.
• Determine if Mutual Aid agreements exist.
• Determine if local contractors will be needed to assist in Phase II operations.
• Determine if additional State and/or Federal assistance will be required.
• Develop local field inspection teams. The teams become the “eyes and ears” for the DMTF.
• Coordinate through local agencies to establish a contracted work force capable of expeditious removal of the debris.
• Develop an independent team using the local and State personnel to monitor the removal activities. This team becomes the debris manager’s “eyes and ears” in the field.
• Conduct daily update briefings with key debris managers. Ensure that all major debris removal and disposal actions are reviewed and approved by the local debris manager.
• Ensure that a representative of the DMTF attends all briefings to resolve any coordination problems between State and Federal debris removal efforts and local debris removal and disposal efforts.
• Coordinate with local, tribal and State DOT and law enforcement authorities to ensure that traffic control measures expedite debris removal activities.
• Establish a proactive information management plan. Emphasis should be placed on actions that the public can perform to expedite the cleanup process, such as separating burnable and nonburnable debris; segregating HHW; placing debris at the curbside; keeping debris piles away from fire hydrants and valves, reporting locations of illegal dump sites or incidents of illegal dumping; and segregating recyclable materials.
The public should be kept informed of debris pick-up schedules, disposal methods and ongoing actions to comply with State and Federal Environmental Protection Agency (EPA) regulations, disposal procedures for self-help and independent contractors, and restrictions and penalties for creating illegal dumps. The Public Information Officer (PIO) should be prepared to respond to questions pertaining to debris removal from the press and local residents. The following questions are likely to be asked:

- What is the pick-up system?
- When will the contractor be in my area?
- Who are the contractors and how can I contact them?
- Should I separate the different debris materials and how?
- How do I handle Household Hazardous Waste?
- What if I am elderly?

Private Property Debris Removal

- Dangerous structures should be the responsibility of the owner or local government to demolish to protect the health and safety of adjacent residents. However, experience has shown that unsafe structures will remain because of the lack of insurance, absentee landlords, or under-staffed and under-equipped local governments. Consequently, demolition of these structures may become the responsibility of DMTF.
- Develop procedures to ensure complete cooperation with numerous local and State government officials to include the following: real estate offices, local law and/or code enforcement agencies, State historic preservation office, qualified contractors to remove HHW, asbestos, lead-based paint, and field teams to photograph the sites before and after demolition.
- Include a copy of Demolition of Private Property checklist
- Include copies of sample ordinances that can be activated when a “state of emergency” is implemented, eliminating any unnecessary waiting period.
- The most significant building demolition problem will be that local governments do not have proper ordinances in effect to handle emergency condemnation procedures. Moreover, structures will be misidentified or have people or belongings in them when the demolition crews arrive necessitating removal by local law enforcement. Close coordination is essential, and it is recommended that at least one FEMA staff person be on site to work directly with the local government staff to ensure that all required legal actions are taken.

Household Hazardous Wastes Removal

- HHW may be generated as a result of a major natural disaster. HHW may consist of common household chemicals, propane tanks, oxygen bottles, batteries, and industrial and agricultural chemicals. These items will be mixed into the debris stream and will require close attention throughout the debris removal and disposal process.
- Consider HHW response teams be assigned and respond ahead of any removal efforts. Consider preparing draft emergency contracts with generic scopes of work. Coordinate with regulatory agencies concerning possible regulatory waivers and other emergency response requirements.
- Arrange for salvageable hazardous materials to be collected and segregated based on their intended use. Properly trained personnel or emergency response HHW contractors should accomplish removal of hazardous waste. Coordinate with regulatory agencies to ensure cleanup actions meet local, tribal, State, and Federal regulations.
Complete HHW identification and segregation before building demolition begins. Qualified contractors should remove HHW debris. Regular demolition contractors can remove uncontaminated debris.

A separate staging area for HHW materials, contaminated soils, and contaminated debris should be established at each TDSR site. The staging area should be lined with an impermeable material and bermed to prevent contamination of the groundwater and surrounding area. Materials should be removed and disposed of using qualified HHW personnel/contractors in accordance with local, tribal, State and Federal regulations.

TEMPORARY DEBRIS STORAGE AND REDUCTION SITES

Once the debris is removed from the damaged area, it will be taken to temporary debris storage and reduction sites.

Removal and disposal actions should be handled at the lowest level possible based on the magnitude of the event. It follows the normal chain of responsibility, i.e., local level, county level, State level, and when resources are exceeded at each level of responsibility, Federal assistance may be requested according to established procedures. Because of the limited debris removal and reduction resources, the establishment and operation of TDSR sites are generally accomplished by contracts.

Emphasis is placed on local government responsibilities for developing debris disposal contracts. Local, tribal, county and/or State governments may be responsible for developing and implementing these contracts for debris removal and disposal under most disaster conditions.

The DMTF should review all debris disposal contracts. There should be a formal means to monitor contractor performance to ensure that funds are being used wisely.

Site Preparation. The topography and soil conditions should be evaluated to determine best site layout. Consider ways to make remediation and restoration easier when planning site preparation.

Site Operations. Site preparation and operation are usually left up to the contractor, but guidance can help avoid problems with the ultimate closeout.

Establish lined temporary storage areas for ash, HHW, fuels, and other materials that can contaminate soils, groundwater and surface water. Set up plastic liners, when possible, under stationary equipment such as generators and mobile lighting plants. Include this as a requirement of the contract scope of work.

If the site is also an equipment staging area, monitor fueling and equipment repair to prevent and mitigate spills such as petroleum products and hydraulic fluids. Include clauses in contract scope of work to require immediate cleanup by the contractor.

Be aware of and mitigate things that will irritate the neighbors such as:

- **Smoke** - proper construction and operation of incineration pits. Don’t overload air curtains.
- **Dust** - employ water trucks.
- **Noise** - construct perimeter berms.
- **Traffic** - proper layout of ingress and egress procedures to help traffic flow.
APPENDIX B
DEBRIS MANAGEMENT PLAN OUTLINE EXAMPLE

DEBRIS REDUCTION METHODS

Volume Reduction by Incineration

- There are several incineration methods available including **uncontrolled open incineration**, **controlled open incineration**, **air curtain pit incineration**, and **refractor lined pit incineration**. The DMTF should consider each incineration method before selection and implementation as part of the overall volume reduction strategy.
- **Uncontrolled Open Incineration**: Uncontrolled open incineration is the least desirable method of volume reduction because it lacks environmental control. However, in the haste to make progress, the Department of Natural Resources may issue waivers to allow this method of reduction early in a disaster.
- **Controlled Open Incineration**: Controlled open incineration is a cost-effective method for reducing clean woody debris in rural areas. This option must be terminated if mixed debris such as treated lumber, poles, nails, bolts, tin and aluminum sheeting enters the waste flow. Clean woody tree debris presents little environmental damage and the resulting ash can be used as a soil additive by the local agricultural community. Department of Agriculture and county agricultural extension personnel should be consulted to determine if and how the resulting ash can be recycled as a soil additive. Responsible agencies and telephone numbers should be provided.
- **Air Curtain Pit Incineration**: Air curtain pit incineration offers an effective means to expedite the volume reduction process by substantially reducing the environmental concerns caused by open incineration. Specifications and statements of work should be developed to expedite the proper use of the systems, because experience has shown that many contractors and subcontractors are not fully knowledgeable of the system operating parameters.
- **Refractor Lined Pit Incineration**: Pre-manufactured refractory lined pit burners are an alternative to air curtain open pit incineration. The units can be erected on site in a minimal amount of time. Some are portable and others must be built in-place. The units are especially suited for locations with high water tables, sandy soil, or where materials are not available to build above ground pits. The engineered features designed into the units allow for a reduction rate of approximately 95% with a minimum of air pollution. The air curtain traps smoke and small particles and recirculates them to enhance combustion that reaches over 2,500 degrees Fahrenheit. Manufacturers claim that combustion rates of about 25 tons per hour are achievable while still meeting emission standards.
- **Local officials, environmental groups, and local citizens should be thoroughly briefed on the type of incineration method being used, how the systems work, environmental standards, health issues, and the risk associated with each type of incineration. PIOs should take the initiative to keep the public informed. A proactive public information strategy to include press releases and media broadcasts should be included in any operation that envisions incineration as a primary means of volume reduction.**
Environmental Controls

Environmental controls are essential for all incineration methods, and the following should be considered:

- A setback of at least 1,000 feet should be maintained between the debris piles and the incineration area. Keep at least 1,000 feet between the incineration area and the nearest building. Contractors should use fencing and warning signs to keep the public away from the incineration area.
- The fire should be extinguished approximately two hours before anticipated removal of the ash mound. The ash mound should be removed when it reaches 2 feet below the lip of the incineration pit.
- The incineration area should be placed in an above ground or below ground pit that is no wider than 8 feet and between 9 and 14 feet deep.
- The incineration pits should be constructed with limestone and reinforced with earth anchors or wire mesh to support the weight of the loaders. There should be a 1-foot impervious layer of clay or limestone on the bottom of the pit to seal the ash from the aquifer.
- The ends of the pits should be sealed with dirt or ash to a height of 4 feet.
- A 12-inch dirt seal should be placed on the lip of the incineration pit area to seal the blower nozzle. The nozzle should be 3 to 6 inches from the end of the pit.
- There should be 1-foot high, unburnable warning stops along the edge of the pit’s length to prevent the loader from damaging the lip of the incineration pit.
- Hazardous or contaminated ignitable material should not be placed in the pit. This is to prevent contained explosions.
- The airflow should hit the wall of the pit about 2 feet below the top edge of the pit, and the debris should not break the path of the airflow except during dumping.
- The pit should be no longer than the length of the blower system, and the pit should be loaded uniformly along the length.

Volume Reduction by Grinding and Chipping

- Hurricanes and tornadoes may present the opportunity to employ large-scale grinding and chipping operations as part of the overall debris volume reduction strategy. Hurricanes can blow away scarce topsoil in the agricultural areas and cause extensive tree damage and blow-down. This two-fold loss, combined with local climatic conditions, may present an excellent opportunity to reduce clean woody debris into suitable mulch that can be used to replenish the topsoil and retain soil moisture.
- Grinding and chipping woody debris is a viable reduction method. Although more expensive than incineration, grinding and chipping is more environmentally friendly, and the resulting product, mulch, can be recycled. In some locations the mulch will be a desirable product because of shallow topsoil conditions. In other locations it may become a landfill product.
- Grinding and chipping woody debris reduces the large amounts of tree blow-down. Chipping operations are suitable in urban areas where streets are narrow or in groves of trees where it is cheaper to reduce the woody vegetation to mulch than to move it to a central grinding site and then returning it to the affected area. This reduces the costs associated with double handling.
• The DMTF should work closely with local environmental and agricultural groups to determine if there is a market for mulch. Another source for disposal of ground woody debris may be as an alternative fuel for industrial heating or for use in a cogeneration plant.

• There are numerous makes and models of grinders and chippers on the market. When contracting, the most important item to specify is the size of the mulch. If the grinding operation is strictly for volume reduction, size is not important. However, mulch to be used for agricultural purposes must be of a certain size and be virtually free of paper, plastic and dirt.

• The average size of wood chips produced should not exceed 4 inches in length and ½ inch in diameter. Production output should average 100 to 150 cubic yards per hour when debris is moderately contaminated, which slows feeding operations, and 200 to 250 cubic yards per hour for relatively clean debris. Note that this is not machine capability; this is contractor output or performance capability.

• Contaminants are all materials other than wood products and should be held to 10% or less for the mulch to be acceptable. Plastics are a big problem and should be eliminated completely. To help eliminate contaminants, root rake loaders should be used to feed or crowd materials to the grapplers. Bucket-loaders tend to scoop up earth, which is a contaminant and causes excessive wear on the grinder or chipper. Hand laborers should remove contaminants prior to feeding the grinders. Shaker screens should be used when processing stumps with root balls or when large amounts of soil are present in the woody debris.

• Chippers are ideal for use in residential areas, orchards, or groves. The number of damaged and uprooted trees presents significant problems if they are pushed to the rights-of-way for eventual pick-up and transport to staging and reduction sites. The costs associated with chipping are reasonable because the material does not need to be transported twice.

• Grinders are ideal for use at debris staging and reduction sites because of their high volume reduction capacity. Locating the grinders is critical from a noise and safety point-of-view. Moreover, there is a need for a large area to hold the woody debris and an area to hold the resulting mulch. Ingress and egress to the site is also an important consideration.

Volume Reduction by Recycling

• Recycling reduces mixed debris volume before it is hauled to a landfill. Recycling is attractive and strongly supported by __________ because there may be an economic value to the recovered material if it can be sorted and sold. A portable Materials Recovery Facility could be set up at the site. Metals, wood, and soils are prime candidates for recycling. The major drawback is the potential environmental impact of the recycling operation. In areas where there is a large usage of chemical agricultural fertilizer, the recovered soil may be too contaminated for use on residential or existing agricultural land.

• Hurricanes may present opportunities to contract out large-scale recycling operations and to achieve an economic return from some of the prime contractors who exercise their initiative to segregate and recycle debris as it arrives at the staging and reduction sites. Recycling has significant drawbacks if contracts are not properly written and closely monitored.
• Specialized contractors should be available to bid on disposal of debris by recycling, if it is well sorted. Contracts and monitoring procedures should be developed to ensure that the recyclers comply with local, tribal, State and Federal environmental regulations.

• Recycling should be considered early in the debris removal and disposal operation because it may present an opportunity to reduce the overall cost of the operation. The following materials are suitable for recycling.

 • **Metals.** Hurricanes and tornadoes may cause extensive damage to mobile homes, sun porches, and green houses. Most of the metals are non-ferrous and suitable for recycling. Trailer frames and other ferrous metals are also suitable for recycling. Metals can be separated using an electromagnet. Metals that have been processed for recycling can be sold to metal recycling firms.

 • **Soil.** Cleanup operations using large pieces of equipment pick up large amounts of soil. The soil is transported to the staging and reduction sites where it is combined with other organic materials that will decompose over time. Large amounts of soil can be recovered if the material is put through some type of screen or shaker system. This procedure can produce significant amounts of soil that can either be sold or recycled back into the agricultural community. This soil could also be used at local landfills for cover. It is more expensive to transport and pay tipping fees at local landfills than to sort out the heavy dirt before moving the material. Monitoring and testing of the soil may be necessary to ensure that it is not contaminated with chemicals.

 • **Wood.** Woody debris can be either ground or chipped into mulch.

 • **Construction Material.** Concrete block and other building materials can be ground and used for other purposes if there is a ready market. Construction materials and wood can also be shred to reduce volume. This construction material could also be used at local landfills for cover.

 • **Residue Material.** Residue material that cannot be recycled, such as cloth, rugs, and trash, can be sent to a landfill for final disposal.

TDSR SITE CLOSE-OUT PROCEDURES

• Each TDSR site will eventually be emptied of all material and be restored to its previous condition and use. The contractor should be required to remove and dispose of all mixed debris, construction and demolition (C&D) debris, and debris residue to approved landfills. Quality assurance inspectors should monitor all closeout and disposal activities to ensure that contractors complied with contract specifications. Additional measures will be necessary to meet local, tribal, State and Federal environmental requirements because of the nature of the staging and reduction operation.

• The contractor must assure the DMTF that all sites are properly remediated. There will be significant costs associated with this operation as well as close scrutiny by the local press and environmental groups. Site remediation will go smoothly if baseline data collection and site operation procedures are followed.

• The basic close-out steps are to remove all debris from the site; conduct an environmental audit or assessment; develop a remediation or restoration plan approved by the appropriate environmental agency; execute the plan; get acceptance from the landowner; and terminate lease payments, if applicable. The key to timely closeout of the mission is the efficient scheduling of the above activities for multiple sites. Therefore, critical path scheduling of all the activities as far in advance as possible will minimize down time between steps.

• **Environmental Restoration.** Stockpiled debris will be a mix of woody vegetation, construction material, household items, and yard waste. HHW and medical wastes should be segregated and removed prior to stockpiling. Activities at the debris disposal sites will include anyone or a combination of the following activities: stockpiling, sorting, recycling, incineration, grinding, and...
chipping. Incineration is done in air curtain pits and generally only woody debris is incinerated; however, the efficiency of the incineration and the quality of incineration material is highly variable. Contamination may occur from petroleum spills at staging and reduction sites or runoff from the debris piles, incineration sites, and ash piles.

- **Site Remediation.** During the debris removal process and after the material has been removed from each of the debris sites, environmental monitoring will be needed to close each of the sites. This is to ensure that no long-term environmental contamination is left on the site. The monitoring should be done on three different media: ash, soil, and groundwater.
- The monitoring of the ash should consist of chemical testing to determine the suitability of the material for landfiling.
- Monitoring of the soils should be by portable methods to determine if any of the soils are contaminated by volatile hydrocarbons. The contractors may do this if it is determined that hazardous material, such as oil or diesel fuel was spilled on the site. This phase of the monitoring should be done after the stockpiles are removed from the site.
- The monitoring of the groundwater should be done on selected sites to determine the probable effects of rainfall leaching through either the ash areas or the stockpile areas.
- Consider the following requirements to closeout a temporary staging and reduction site(s).
 - Coordinate with local and State officials responsible for construction, real estate, contracting, project management, and legal counsel regarding requirements and support for implementation of a site remediation plan.
 - Establish a testing and monitoring program. The contractor should be responsible for environmental restoration of both public and leased sites. Contractors will also be required to remove all debris from sites for final disposal at landfills prior to closure.
 - Reference appropriate and applicable environmental regulations.
 - Prioritize site closures.
 - Schedule closeout activities.
 - Determine separate protocols for air, water and soil testing.
 - Develop cost estimates.
 - Develop decision criteria for certifying satisfactory closure based on limited baseline information.
 - Develop administrative procedures and contractual arrangements for closure phase.
 - Inform local, tribal and State environmental agencies regarding acceptability of program and established requirements.
 - Designate approving authority to review and evaluate contractor closure activities and progress.
 - Retain staff during closure phase to develop site-specific remediation for sites, as needed, based on information obtained from the closure checklist.

ORGANIZATION AND RESPONSIBILITIES

Local Government Agencies and Departments
- Identify each government agency or department that has debris clearing, removal or disposal actions.
- Define their responsibilities in detail.

Supporting Agencies
- Identify each government agency or department that has debris clearing, removal or disposal actions.
- Define their responsibilities in detail.
APPENDIX B
DEBRIS MANAGEMENT PLAN OUTLINE EXAMPLE

ADMINISTRATION AND LOGISTICS

- All agencies will document personnel and material resources used to comply with this annex. Documentation will be used to support any Federal assistance that may be requested or required.
- Requests for support and/or assistance will be upchanneled from the local level to the county level EOC and then to the State EOC. Requests for Federal assistance will be made by the State EOC through established procedures, as outlined in the Federal Response Plan.
- All agencies will ensure 24-hour staffing capability during implementation of this annex, if the emergency or disaster requires.
- Define who will be responsible to initiate an annual update of this annex. It will be the responsibility of each tasked agency to update its respective portion of the annex and ensure any limitations and shortfalls are identified and documented, and work-around procedures developed, if necessary.

AUTHORITIES AND REFERENCES

- Develop a listing of authorities and references identified in this annex.

APPENDICES

- Develop a listing of appropriate appendices that support this annex.